Allosteric control of mammalian DNA methyltransferases – a new regulatory paradigm
نویسندگان
چکیده
In mammals, DNA methylation is introduced by the DNMT1, DNMT3A and DNMT3B methyltransferases, which are all large multi-domain proteins containing a catalytic C-terminal domain and an N-terminal part with regulatory functions. Recently, two novel regulatory principles of DNMTs were uncovered. It was shown that their catalytic activity is under allosteric control of N-terminal domains with autoinhibitory function, the RFT and CXXC domains in DNMT1 and the ADD domain in DNMT3. Moreover, targeting and activity of DNMTs were found to be regulated in a concerted manner by interactors and posttranslational modifications (PTMs). In this review, we describe the structures and domain composition of the DNMT1 and DNMT3 enzymes, their DNA binding, catalytic mechanism, multimerization and the processes controlling their stability in cells with a focus on their regulation and chromatin targeting by PTMs, interactors and chromatin modifications. We propose that the allosteric regulation of DNMTs by autoinhibitory domains acts as a general switch for the modulation of the function of DNMTs, providing numerous possibilities for interacting proteins, nucleic acids or PTMs to regulate DNMT activity and targeting. The combined regulation of DNMT targeting and catalytic activity contributes to the precise spatiotemporal control of DNMT function and genome methylation in cells.
منابع مشابه
Regulation of mammalian DNA methyltransferases: a route to new mechanisms.
DNA methyltransferases (DNMTs) establish and maintain DNA methylation patterns at specific regions of the genome, thereby contributing to gene regulation. It is becoming evident that an intricate web of pathways target DNMTs to these genomic regions. Here, we review the understanding of these regulatory mechanisms and provide an overview of the new findings, emphasizing the emerging scenario in...
متن کاملP-70: Evidence for Differential Gene Expression of A Major EpigeneticModifier Enzyme, de novo DNA Methyltransferase 3b, through Vitrification of Mouse Ovary Tissue
Background: Ovarian tissue cryopreservation is a feasible method to preserve female reproductive potential, especially in young patients with cancer or in women at risk of premature ovarian failure. Vitrification has recently emerged as a new trend for biological specimen preservation. On the other hand, gene expression that changes during vitrification can influence oocyte maturation and need ...
متن کاملThe role of mammalian DNA methyltransferases in the regulation of gene expression.
The term epigenetic modification denotes reversible traits of gene expression that do not include alterations to the DNA sequence. These epigenetic alterations are responsible for chromatin structure stability, genome integrity, modulation of tissue-specific gene expression, embryonic development, genomic imprinting and X-chromosome inactivation in females. Epigenetic changes include reversible...
متن کاملLecture Title: Combining Simulations and Experiment to Characterize Protein Folding/unfolding at Atomic Resolution
Until recently, most enzymes known to human had been found by obtaining organisms or tissues and assaying them biochemically and genetically. This has traditionally been a slow process. With the advent of recombinant DNA technologies, new methods involving cloning and sequencing have changed this paradigm. Now that large quantities of DNA sequence are available it is possible to use quite sophi...
متن کاملInfluence of a steroid receptor DNA-binding domain on transcriptional regulatory functions.
We have isolated two independent mutations in the DNA-binding domain of the rat glucocorticoid receptor, P493R and S459A, that implicate DNA binding in the control of attached transcriptional activation domains, either that of the receptor itself or of VP16. The mutants are capable of activating transcription normally, but unlike wild-type receptors, they interfere with particular transcription...
متن کامل